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a b s t r a c t

In recent years Deep Learning has brought about a breakthrough in Medical Image Segmentation.
In this regard, U-Net has been the most popular architecture in the medical imaging community.
Despite outstanding overall performance in segmenting multimodal medical images, through extensive
experimentations on some challenging datasets, we demonstrate that the classical U-Net architecture
seems to be lacking in certain aspects. Therefore, we propose some modifications to improve upon the
already state-of-the-art U-Net model. Following these modifications, we develop a novel architecture,
MultiResUNet, as the potential successor to the U-Net architecture. We have tested and compared
MultiResUNet with the classical U-Net on a vast repertoire of multimodal medical images. Although
only slight improvements in the cases of ideal images are noticed, remarkable gains in performance
have been attained for the challenging ones. We have evaluated our model on five different datasets,
each with their own unique challenges, and have obtained a relative improvement in performance
of 10.15%, 5.07%, 2.63%, 1.41%, and 0.62% respectively. We have also discussed and highlighted some
qualitatively superior aspects of MultiResUNet over classical U-Net that are not really reflected in the
quantitative measures.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Since the inception of digital medical imaging equipment,
significant attention has been drawn towards applying image pro-
cessing techniques in analyzing medical images. Multidisciplinary
researchers have been working diligently for decades to develop
automated diagnosis systems, and to this day it is one of the
most active research areas (Schindelin, Rueden, Hiner, & Eliceiri,
2015). The task of a computer-aided medical image analysis tool
is twofold: segmentation and diagnosis. In the general Semantic
Segmentation problem, the objective is to partition an image into
a set of non-overlapping regions, which allows the homogeneous
pixels to be clustered together (McGuinness & O’connor, 2010).
However, in the context of medical images, the interest often
lies in distinguishing some interesting areas of the image only,
like the tumor regions (Codella et al., 2018), organs (Yang et al.,
2018) etc. This enables the doctors to analyze only the significant
parts of the otherwise incomprehensible multimodal medical im-
ages (Naik et al., 2008). Furthermore, often the segmented images
are used to compute various features that may be leveraged in the
diagnosis (Rouhi, Jafari, Kasaei, & Keshavarzian, 2015). Therefore,
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image segmentation is of utmost importance and has tremendous
application in the domain of Biomedical Engineering.

Owing to the profound significance of medical image segmen-
tation and the complexity associated with doing that manually,
a vast number of automated medical image segmentation meth-
ods have been developed, mostly focusing on images of specific
modalities. In the early days, simple rule-based approaches were
followed; however, those methods failed to maintain robustness
when tested on a huge variety of data (Pham, Xu, & Prince, 2000).
Consequently, more adaptive algorithms were developed relying
on geometric shape priors with tools of soft-computing (Mesejo,
Valsecchi, Marrakchi-Kacem, Cagnoni, & Damas, 2015) and fuzzy
systems (Zheng, Jeon, Xu, Wu, & Zhang, 2015). Nevertheless, these
methods suffer from human biases and cannot deal with the
variances in real-world data.

Recent advancements in deep learning (LeCun, Bengio, & Hin-
ton, 2015) have shown a lot of promises towards solving issues
discussed above. In this regard, Convolutional Neural Networks
(CNN) (LeCun, Bottou, Bengio, & Haffner, 1998) have been the
most ground-breaking addition, which are dominating the field
of Computer Vision. CNNs have been responsible for the phenom-
enal advancements in tasks like object classification (Krizhevsky,
Sutskever, & Hinton, 2012), object localization (Sermanet et al.,
2013) etc., and the continuous improvements to CNN architec-
tures are bringing about further radical progress (He, Zhang,
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Ren, & Sun, 2016; Simonyan & Zisserman, 2014; Szegedy, Ioffe,
Vanhoucke, & Alemi, 2017; Szegedy et al., 2015). Semantic Seg-
mentation tasks have also been revolutionalized by Convolu-
tional Networks. Since CNNs are more intuitive in performing
object classification, Ciresan, Giusti, Gambardella, and Schmidhu-
ber (2012) presented a sliding window based pipeline to perform
semantic segmentation using CNN. Long, Shelhamer, and Darrell
(2015) proposed a fully convolutional network (FCN) to perform
end-to-end image segmentation, which outperformed the ex-
isting approaches. Badrinarayanan, Kendall, and Cipolla (2015)
improved upon FCN, by developing a novel architecture, namely,
SegNet. SegNet consists of a 13 layer deep encoder network that
extracts spatial features from the image, and a corresponding 13
layer deep decoder network that up-samples the feature maps
to predict the segmentation masks. Chen, Papandreou, Kokkinos,
Murphy, and Yuille (2018) presented DeepLab and performed
semantic segmentation using atrous convolutions.

In spite of initiating a breakthrough in computer vision tasks,
a major drawback of the CNN architectures is that they require
massive volumes of training data. Unfortunately, in the context of
medical images, not only the acquisition of images is expensive
and complicated, accurate annotation thereof adds even more
to the complexity (Litjens & Li et al., 2017). Nevertheless, CNNs
have shown great promises in medical image segmentation in
recent years (Anwar & Li et al., 2018; Litjens et al., 2017), and
most of the credits go to U-Net (Ronneberger, Fischer, & Brox,
2015). The structure of U-Net is quite similar to SegNet, com-
prising an encoder and a decoder network. Furthermore, the
corresponding layers of the encoder and decoder network are
connected by skip connections, prior to a pooling and subsequent
to a deconvolution operation respectively. U-Net has been show-
ing impressive potential in segmenting medical images, even
with a scarce amount of labeled training data, to the extent
that it has become the de-facto standard in medical image seg-
mentation (Litjens et al., 2017). U-Net and U-Net like models
have been successfully used in segmenting biomedical images
of neuronal structures (Ronneberger et al., 2015), liver (Christ
& Li et al., 2016), skin lesion (Lin, Michael, Kalra, & Tizhoosh,
2017), colon histology (Sirinukunwattana & Li et al., 2017), kid-
ney (Çiçek, Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016),
vascular boundary (Merkow, Marsden, Kriegman, & Tu, 2016),
lung nodule (Setio & Li et al., 2017), prostate (Yu, Yang, Chen, Qin,
& Heng, 2017), etc. and the list goes on.

In this paper, in parallel to appreciating the capabilities of
U-Net, the most popular and successful deep learning model for
biomedical image segmentation, we diligently scrutinize the net-
work architecture to discover some potential scopes of improve-
ment. We argue and hypothesize that the U-Net architecture
may be lacking in certain criteria and based on contemporary
advancements in the field of deep computer vision, we propose
some alterations to it. In the sequel, we develop a novel model
called MultiResUNet, an enhanced version of U-Net, that we be-
lieve will significantly advance the state of the art in the domain
of general multimodal biomedical image segmentation. We put
our model to test using a variety of medical images originating
from different modalities, and even with 3D medical images.
From extensive experimentation with this diverse set of medical
images, it is found that MultiResUNet overshadows the classical
U-Net model in all the cases even with slightly less number of
parameters. The contributions of this paper can be summarized
as follows.

• We analyze the U-Net model architecture in depth and con-
jecture some potential opportunities for further enhance-
ments.

• Based on the probable scopes for improvement, we propose
MultiResUNet, which is an enhanced version of the standard
U-Net architecture.

• We experiment with different public medical image datasets
of different modalities, and MultiResUNet shows superior
performance.

• We also experiment with a standard 3D extension of Mul-
tiResUNet on a particular 3D MRI dataset, and it outperforms
the enhanced 3D U-Net as well.

• We qualitatively examine some very challenging images and
observe a significant improvement in using MultiResUNet
over U-Net.

2. Overview of the UNet architecture

Similar to FCN (Long et al., 2015) and SegNet (Badrinarayanan
et al., 2015), U-Net (Ronneberger et al., 2015) uses a network
of convolutional layers entirely to perform the task of semantic
segmentation. The network architecture is symmetric, having
an Encoder that extracts spatial features from the image, and a
Decoder that constructs the segmentation map from the encoded
features. The Encoder follows the typical formation of a convolu-
tional network. It involves a sequence of two 3 × 3 convolution
operations, followed by a max-pooling operation with a pooling
size of 2 × 2 and stride of 2. This sequence is repeated four
times, and after each down-sampling, the number of filters in
the convolutional layers is doubled. Finally, a progression of two
3 × 3 convolution operations connects the Encoder to the Decoder.

On the other hand, the Decoder first up-samples the feature
map using a 2 × 2 transposed convolution operation (Zeiler,
Krishnan, Taylor, & Fergus, 2010), reducing the feature channels
by half. Then a sequence of two 3 × 3 convolution operations
is performed again. Similar to the Encoder, this succession of up-
sampling and two convolution operations is repeated four times,
halving the number of filters at each stage. Finally, a 1 × 1
convolution operation is performed to generate the final segmen-
tation map. All convolutional layers in this architecture, except
for the final one, use the ReLU (Rectified Linear Unit) activation
function (LeCun et al., 2015); the final convolutional layer uses a
Sigmoid activation function.

Perhaps, the most ingenious aspect of the U-Net architec-
ture is the introduction of skip connections. In all the four lev-
els, the output of the convolutional layer, prior to the pooling
operation of the Encoder is transferred to the Decoder. These
feature maps are then concatenated with the output of the up-
sampling operation, and the concatenated feature map is propa-
gated to the successive layers. These skip connections allow the
network to retrieve the spatial information lost by pooling opera-
tions (Drozdzal, Vorontsov, Chartrand, Kadoury, & Pal, 2016). The
network architecture is illustrated in Fig. 1.

Subsequently, the U-Net architecture was extended through
a few modifications to 3D U-Net for volumetric segmentation
(Çiçek et al., 2016). In particular, the two-dimensional convo-
lution, max pooling, transposed convolution operations were
replaced by their three-dimensional counterparts. However, in
order to limit the number of parameters, the depth of the network
was reduced by one. Moreover, along with using batch normal-
ization (Ioffe & Szegedy, 2015), the number of filters was doubled
before the pooling layers to avoid bottlenecks (Szegedy, Van-
houcke, Ioffe, Shlens, & Wojna, 2016). The original U-Net (Ron-
neberger et al., 2015) did not use batch normalization.
However, when experimented with it later, the results revealed,
perhaps astonishingly, that batch normalization may even hurt
the performance sometimes (Çiçek et al., 2016).
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Fig. 1. The classic U-Net architecture. The model comprises an encoder and a decoder pathway, with skip connections between the corresponding layers.

3. Motivations and high level considerations

U-Net has been a remarkable and the most popular deep net-
work architecture in the medical imaging community, defining
the state of the art in medical image segmentation (Drozdzal
et al., 2016). However, through deep contemplation of the U-Net
architecture and drawing some parallels to the recent advance-
ment in the field of deep computer vision, we have made some
insightful and useful observations (as described in the following
subsections); these observations in the sequel have led us to some
ideas for improvement.

3.1. Variation of scale in medical images

In medical image segmentation, we are interested in segment-
ing cell nuclei (Coelho, Shariff, & Murphy, 2009), organs (Yang
et al., 2018), tumors (Codella et al., 2018) etc. from images orig-
inating from various modalities. However, in most cases, these
objects of interest are of irregular and different scales. For exam-
ple, Fig. 2 demonstrates that the scale of skin lesions can greatly
vary in dermoscopy images. These situations frequently occur in
different types of medical image segmentation tasks.

Therefore, a network should be robust enough to analyze
objects at different scales. Although this issue has somewhat been
addressed in several deep computer vision works (Szegedy et al.,
2017, 2015, 2016; Zhao, Shi, Qi, Wang, & Jia, 2017), to the best
of our knowledge, it is still not addressed comprehensively in
the domain of medical image segmentation. Serre, Wolf, Bileschi,
Riesenhuber, and Poggio (2007) employed a sequence of fixed
Gabor filters of varying scales to acknowledge the variation of
scale in the image. Later on, the revolutionary Inception archi-
tecture (Szegedy et al., 2015) introduced Inception blocks that
utilized convolutional layers of varying kernel sizes in parallel,
to inspect the points of interest in images from different scales.
These perceptions, obtained at different scales, were combined
together and passed on deeper into the network.

In the U-Net architecture, after each pooling layer and trans-
posed convolutional layer, a sequence of two 3 × 3 convolutional
layers is used. As explained in Szegedy et al. (2016), this series of
two 3 × 3 convolutional operation actually resembles a 5 × 5
convolutional operation. Therefore, following the approach of the
Inception network, the simplest way to augment U-Net with a
multi-resolutional analysis capability is to incorporate 3 × 3, and
7 × 7 convolution operations in parallel to the 5 × 5 convolution
operation, as shown in Fig. 3a.

Therefore, replacing the convolutional layers with Inception-
like blocks should facilitate the U-Net architecture to reconcile
the features learnt from the image at different scales. Another
possible option is to use strided convolutions (Wang et al., 2018),

but in our experiments, it is overshadowed by the former. Despite
the gain in performance, the introduction of additional convo-
lutional layers in parallel extravagantly increases the memory
requirement. Therefore, we improvise with the following ideas
borrowed from Szegedy et al. (2016). We factorize the bigger,
more demanding 5 × 5 and 7 × 7 convolutional layers, us-
ing a sequence of smaller and lightweight 3 × 3 convolutional
blocks, as shown in Fig. 3b. The outputs of the 2nd and the 3rd
3 × 3 convolutional blocks effectively approximate the 5 × 5
and 7 × 7 convolution operations respectively. We hence take
the outputs from the three convolutional blocks and concatenate
them together to extract the spatial features from different scales.
From our experiments, it is seen that the results of this compact
block closely resemble that of the memory-intensive Inception-
like block described earlier. This outcome is in line with the
findings of Szegedy et al. (2016), as the adjacent layers of a vision
network are expected to be correlated.

Although this modification greatly reduces the memory re-
quirement, it is still quite demanding. This is mostly due to the
fact that in a deep network if two convolutional layers are present
in a succession, then the number of filters in the first one has a
quadratic effect over the memory (Szegedy et al., 2015). There-
fore, instead of keeping all the three consecutive convolutional
layers with an equal number of filters, we gradually increase the
filters in those (from 1 to 3), to prevent the memory requirement
of the earlier layers from exceedingly propagating to the deeper
part of the network. We also add a residual connection because of
their efficacy in biomedical image segmentation (Drozdzal et al.,
2016) as well as to introduce 1 × 1 convolutional layers, which
may allow us to comprehend some additional spatial information.
We call this arrangement a ‘MultiRes block’, as shown in Fig. 3c.

3.2. Probable semantic gap between the corresponding levels of
encoder–decoder

An ingenious contribution of the U-Net architecture was the
introduction of shortcut connections between the correspond-
ing layers before the max-pooling and after the deconvolution
operations. This enables the network to propagate the spatial
information that gets lost during the pooling operation from
encoder to decoder.

Despite preserving the dissipated spatial features, a flaw of
the skip connections may be speculated as follows. For instance,
the first shortcut connection bridges the encoder before the first
pooling with the decoder after the last deconvolution operation.
Here, the features coming from the encoder are supposed to be
lower level features as they are computed in the earlier layers of
the network. On the contrary, the decoder features are supposed
to be of much more higher level, since they are computed at
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Fig. 2. Variation of scale in medical images. Fig. 2a, 2b, 2c are examples of dermoscopy images with small, medium and large size of lesions, respectively. The images
have been taken from the ISIC-2018 dataset (Codella et al., 2018).

Fig. 3. Developing the proposed MultiRes block. We start with a simple Inception-like block by using 3 × 3, 5 × 5 and 7 × 7 convolutional filters in parallel and
concatenating the generated feature maps (Fig. 3a). This allows us to reconcile spatial features from different context size. Subsequently, instead of using the 3 × 3,
5 × 5 and 7 × 7 filters in parallel, we factorize the bigger and more expensive 5 × 5 and 7 × 7 filters as a succession of 3 × 3 filters (Fig. 3b) . Fig. 3c illustrates
the MultiRes block, where we have increased the number of filters in the successive three layers gradually and added a residual connection (along with 1 × 1 filters
for conserving dimensions).

the very deep layers of the network, thereby, going through
more processing. Hence, we observe a possible semantic gap
between the two sets of features being merged. We conjecture
that the fusion of these two arguably incompatible sets of features
could cause some discrepancy throughout the learning thereby
adversely affecting the prediction procedure. It may be noted that
the amount of discrepancy is likely to decrease gradually as we
move towards the succeeding shortcut connections. This can be
attributed to the fact that in later stages, not only the features
from the encoder are going through more processing, but also we
are fusing them with decoder features of much juvenile layers.

Therefore, to alleviate the disparity between the encoder–
decoder features, we propose to incorporate some convolutional
layers along the shortcut connections. We hypothesize that these
additional non-linear transformations on the features propagat-
ing from the encoder stage should account for or somewhat
balance the possible semantic gap (alluded to above) introduced
by the higher degree of processing by the deeper decoder stages.
Furthermore, instead of using the usual convolutional layers, we
introduce residual connections to them as they make the learning
easier (Szegedy et al., 2017) and are proven to have great poten-
tial in medical image analysis (Drozdzal et al., 2016). This idea is
inspired from the image to image conversion using convolutional
neural networks (Mao, Shen, & Yang, 2016), where pooling layers
are not favorable for the loss of information. Thus, instead of
simply concatenating the feature maps from the encoder stages
to the decoder stages, we first pass them through a chain of con-
volutional layers with residual connections and then concatenate
them with the decoder features. We call this proposed shortcut
path ‘Res path’, illustrated in Fig. 4. More specifically, 3 × 3 filters
are used in the convolutional layers and 1 × 1 filters accompany
the residual connections.

4. Proposed architecture

In the MultiResUNet model, we replace the sequence of two
convolutional layers with the proposed MultiRes block as intro-
duced in Section 3.2. For each of the MultiRes blocks, we assign
a parameter W that controls the number of filters of the con-
volutional layers inside that block. To maintain a comparable
relationship between the numbers of parameters in the original
U-Net and the proposed model, we compute the value of W as
follows:

W = α × U (1)

Here, U is the number of filters in the corresponding layer of
U-Net and α is a scalar coefficient. This provides us with a con-
venient way to both control the number of parameters and keep
them comparable to that of U-Net. We compare our proposed
model with an U-Net, having #filters = [32, 64, 128, 256, 512]
along the levels, which are also the values of U in our model. We
set α = 1.67 as it keeps the number of parameters in our model
slightly below that of U-Net.

In Section 3.2, we have pointed out that it is beneficial to
gradually increase the number of filters in the successive convolu-
tional layers inside a MultiRes block, instead of keeping them the
same. Hence, we assign

⌊W
6

⌋
,
⌊W

3

⌋
and

⌊W
2

⌋
filters to the three

successive convolutional layers respectively, as this combination
has achieved the best results in our experiments. Also, it can be
noted that similar to the U-Net architecture, after each pooling or
deconvolution operation, the value of W gets doubled or halved
respectively.

In addition to introducing the MultiRes blocks, we also replace
the ordinary shortcut connections with the proposed Res paths.
Therefore, we apply some convolution operations on the feature
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Fig. 4. Proposed Res path. Instead of combining the encoder feature maps with the decoder feature in a straight-forward manner, we pass the encoder features
through a sequence of convolutional layers. These additional non-linear operations are expected to reduce the semantic gap between encoder and decoder features.
Furthermore, residual connections are also introduced as they make the learning easier and are very useful in deep convolutional networks.

maps propagating from the encoder stage to the decoder stage.
In Section 3.1, we hypothesized that the intensity of the semantic
gap between the encoder and decoder feature maps are likely to
decrease as we move towards the inner shortcut paths. Therefore,
we also gradually reduce the number of convolutional blocks used
along the Res paths. In particular, we use 4, 3, 2, 1 convolutional
blocks respectively along the four Res paths. Also, in order to
account for the number of feature maps in encoder–decoder, we
use 32, 64, 128, 256 filters in the blocks of the four Res paths
respectively.

All the convolutional layers in this network, except for the out-
put layer, are activated by the ReLU (Rectified Linear Unit) activa-
tion function (LeCun et al., 2015), and are batch-normalized (Ioffe
& Szegedy, 2015). Similar to the U-Net model, the output layer is
activated by a Sigmoid activation function. We present a diagram
of the proposed MultiResUNet model in Fig. 5. The architectural
details are described in Table 1.

5. Datasets

Curation of medical imaging datasets is challenging as com-
pared to the traditional computer vision datasets. Expensive
imaging equipment, sophisticated image acquisition pipelines,
necessity of expert annotation, issues of privacy — all add to the
complexity of developing medical imaging datasets (Litjens et al.,
2017). As a result, only a few public medical imaging benchmark
datasets exist, containing only a handful of images each. In order
to assess the efficacy of the proposed architecture, we have
tested and evaluated it on a variety of image modalities. More
specifically, we have selected datasets that are as heterogeneous
as possible from each other. Also, each of these datasets poses a
unique challenge of its own (more details are given in Sections 7
and 8). The datasets used in the experiments are briefly described
below (also see Table 2 for an overview).

5.1. Fluorescence microscopy images

We have used the fluorescence microscopy image dataset
developed by Murphy Lab (Coelho et al., 2009). This dataset
contains 97 fluorescence microscopy images and a total of 4009
cells are contained in these images. Half of the cells are U2OS cells
and the other half comprises NIH3T3 cells. The nuclei are seg-
mented manually by experts. The nuclei are irregular in terms of
brightness and the images often contain noticeable debris, mak-
ing this a challenging dataset of bright-field microscopy images.
The original resolution of the images range from 1344 × 1024
to 1349 × 1030; they have been resized to 256 × 256 for
computational constraints.

5.2. Electron microscopy images

To observe the effectiveness of the architecture with electron
microscopy images, we have used the dataset of the ISBI-2012:
2D EM segmentation challenge (Arganda-Carreras et al., 2015;
Cardona et al., 2010). This dataset contains only 30 images from
a serial section Transmission Electron Microscopy (ssTEM) of the
Drosophila first instar larva ventral nerve cord (Cardona et al.,
2010). The images face slight alignment errors and are corrupted
with noises. The resolution of the images is 512 × 512, but they
have been resized to 256 × 256 due to computational limitations.

5.3. Dermoscopy images

We have acquired the dermoscopy images from the ISIC-2018:
Lesion Boundary Segmentation challenge dataset. The data for
this challenge were extracted from the ISIC-2017 dataset (Codella
et al., 2018) and the HAM10000 dataset (Tschandl, Rosendahl,
& Kittler, 2018). The compiled dataset contains a total of 2594
images of different types of skin lesions with expert annotation.
The images are of various resolutions, but they have all been
resized to 256 × 192, maintaining the average aspect ratio.

5.4. Endoscopy images

We have used the CVC-ClinicDB (Bernal et al., 2015), a
colonoscopy image database for our experiments with endoscopy
images. The images of this dataset were extracted from frames
of 29 colonoscopy video sequences. Only the images with polyps
have been considered, resulting in a total of 612 images. The
images are originally of resolution 384 × 288 but have been
resized to 256 × 192, maintaining the aspect ratio.

5.5. Magnetic resonance images

All the datasets described above contain 2D medical images.
In order to evaluate our proposed architecture with 3D medical
images, we have used the magnetic resonance images (MRI) from
the BraTS17 competition database (Bakas et al., 2017; Menze
et al., 2015). This dataset contains 210 glioblastoma (HGG) and
75 lower-grade glioma (LGG) multimodal MRI scans. These mul-
timodal scans include native (T1), post-contrast T1-weighted
(T1Gd), T2-weighted (T2) and T2 Fluid Attenuated Inversion Re-
covery (FLAIR) volumes, which were acquired following different
clinical protocols and various scanners from 19 institutions. The
images are of dimensions 240 × 240 × 155 but have been
resized to 80 × 80 × 48 for computational ease. All the four
modalities, namely, T1, T1Gd, T2 and FLAIR are used as four
different channels in evaluating the 3D variant of our model.
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Fig. 5. Proposed MultiResUNet architecture. We replace the sequences of two convolutional layers in the U-Net architecture with the proposed MultiRes blocks.
Furthermore, instead of using plain shortcut (skip) connections, we use the proposed Res paths.

Table 1
MultiResUNet architecture details.
MultiResUNet

Block Layer (filter size) #filters Path Layer (filter size) #filters

MultiRes Block 1 Conv2D(3,3) 8

Res Path 1

Conv2D(3,3) 32
Conv2D(3,3) 17 Conv2D(1,1) 32

MultiRes Block 9 Conv2D(3,3) 26 Conv2D(3,3) 32
Conv2D(1,1) 51 Conv2D(1,1) 32

MultiRes Block 2 Conv2D(3,3) 17 Conv2D(3,3) 32
Conv2D(3,3) 35 Conv2D(1,1) 32

MultiRes Block 8 Conv2D(3,3) 53 Conv2D(3,3) 32
Conv2D(1,1) 105 Conv2D(1,1) 32

MultiRes Block 3 Conv2D(3,3) 35

Res Path 2

Conv2D(3,3) 64
Conv2D(3,3) 71 Conv2D(1,1) 64

MultiRes Block 7 Conv2D(3,3) 106 Conv2D(3,3) 64
Conv2D(1,1) 212 Conv2D(1,1) 64

MultiRes Block 4 Conv2D(3,3) 71 Conv2D(3,3) 64
Conv2D(3,3) 142 Conv2D(1,1) 64

MultiRes Block 6 Conv2D(3,3) 213

ResPath 3

Conv2D(3,3) 128
Conv2D(1,1) 426 Conv2D(1,1) 128

MultiRes Block 5

Conv2D(3,3) 142 Conv2D(3,3) 128
Conv2D(3,3) 284 Conv2D(1,1) 128

Conv2D(3,3) 427 Res Path 4 Conv2D(3,3) 256
Conv2D(1,1) 853 Conv2D(1,1) 256

Table 2
Overview of the datasets.
Modality Dataset No. of images Original resolution Input resolution

Fluorescence microscopy Murphy Lab 97 Variable 256 × 256
Electron microscopy ISBI-2012 30 512 × 512 256 × 256
Dermoscopy ISIC-2018 2594 Variable 256 × 192
Endoscopy CVC-ClinicDB 612 384 × 288 256 × 192
MRI BraTS17 210 HGG + 75 LGG 240 × 240 × 155 80 × 80 × 48

5.6. Challenges in the datasets

As has been mentioned above, each of the datasets used
in the experiments poses unique challenges of its own. In the
Fluorescence Microscopy image dataset, there exist some images
with bright objects that are apparently almost indistinguish-
able from the actual nuclei. These objects act as outliers in
images with well-defined contrast between the foreground and
the background. ISBI-2012 Electron Microscopy dataset presents a
different type of challenge. In this dataset, the region being seg-
mented (i.e., region of interest) covers the majority of the image;
thus a tendency can be observed to over-segment the images.
The Dermoscopy dataset of ISIC-2018 contains images of poor
contrast to the extent that sometimes the skin lesions seem

identical to the background and vice versa. Moreover, various
types of textures, that are present both in the background and
in the foreground, make pattern recognition more difficult. In
the Endoscopy dataset, the boundaries between the polyps and
the background are so vague that often it becomes difficult to
distinguish even for a trained operator (Bernal et al., 2017). In
addition, the polyps are diverse in terms of shape, size, structure,
orientation etc. BRATS17 MRI dataset, on the other hand, is a
dataset containing 3D images. Therefore, it brings forth the chal-
lenges of segmenting 3D volumes. Moreover, the actual tumors
therein are pretty tiny compared to the whole volume; on average
the tumors cover about only 1% of the entire brain scan.
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6. Experiments

We have used Python, more specifically Python3 programming
language (Van Rossum et al., 2007) to conduct the experiments.
The network models have been implemented using Keras (Chol-
let et al., 2015) with Tensorflow backend (Abadi et al., 2016).
Our model implementation is available in the following github
repository:

https://github.com/nibtehaz/MultiResUNet
The experiments have been conducted in a desktop computer

with intel core i7-7700 processor (3.6 GHz, 8 MB cache) CPU, 16
GB RAM, and NVIDIA TITAN XP (12 GB, 1582 MHz) GPU.

6.1. Baseline model

Since the proposed architecture, MultiResUNet, is targeted
towards improving the state of the art U-Net architecture for
medical image segmentation, we have compared its performance
with the U-Net architecture as the baseline. To keep the num-
ber of parameters comparable to our proposed MultiResUNet,
we have implemented the original U-Net (Badrinarayanan et al.,
2015) having five layer deep encoder and decoder, with filter
numbers of 32, 64, 128, 256, 512.

Also, as the baseline for 3D image segmentation, we have
used the 3D counterpart of the U-Net as described in the original
paper (Çiçek et al., 2016). The 3D version of the MultiResUNet is
constructed simply by substituting the 2D convolutional layers,
pooling layers and transposed convolution layers, with their 3D
variants respectively, without any further alterations.

The number of parameters of the models is presented in
Table 3. Although not utterly significant, in both the cases, Mul-
tiResUNet requires a slightly lesser number of parameters.

6.2. Pre-processing/post-processing

The objective of our experiments is to investigate the perfor-
mance of the proposed MultiResUNet architecture as compared
to the original U-Net, as a general model. Therefore, no domain-
specific pre-processing has been applied. The only pre-processing
we have applied is that the input images have been resized to
fit into the GPU memory and the pixel values were divided by
255 to bring them to the [0 . . . 1] range. Similarly, no application-
specific post-processing has been performed. Since the final layer
is activated by a Sigmoid function, it produces outputs in the
range [0 . . . 1]. Therefore, we have applied a threshold of 0.5 to
obtain the segmentation map of the input images.

6.3. Training methodology

The task of semantic segmentation is to predict the individual
pixels whether they represent a point of interest, or are merely
a part of the background. Therefore, this problem ultimately
reduces to a pixel-wise binary classification problem. Hence, as
the loss function of the network, we simply took the binary
cross-entropy function and minimized it.

Let, for an image X , the ground truth segmentation mask be
Y , and the segmentation mask predicted by the model be Ŷ .
For a pixel px, the network predicts ŷpx, whereas, the ground
truth value is ypx. The binary cross-entropy loss for that image
is defined as:

Cross Entropy(X, Y , Ŷ ) =

∑
px∈X

−(ypx log(ŷpx)+(1−ypx) log(1− ŷpx))

(2)

For a batch containing n images the loss function J becomes,

J =
1
n

n∑
i=1

Cross Entropy(Xi, Yi, Ŷi) (3)

We have minimized the binary cross-entropy loss and hence
have trained the model using the Adam optimizer (Kingma &
Ba, 2014). Adam adaptively computes different learning rates for
different parameters from estimates of first and second moments
of the gradients. This idea, in fact, combines the advantages of
both AdaGrad (Duchi, Hazan, & Singer, 2011) and RMSProp (Tiele-
man & Hinton, 2012); therefore Adam has been often used as
the default choice, in benchmarking deep learning models (Ruder,
2016). Adam has a number of parameters including β1 and β2,
which control the decay of first and second moments respec-
tively. In this work, we have used Adam with the parameters
mentioned in the original paper. The models have been trained
for 150 epochs using Adam optimizer. The reason for select-
ing 150 as the number of epochs is due to the fact that after
150 epochs no further improvement is noticed in either of the
networks.

6.4. Evaluation metric

In semantic segmentation, usually, the points of interest com-
prise a small segment of the entire image. Therefore, metrics
like precision, recall are inadequate and often lead to a false
sense of superiority, inflated by the perfection of detecting the
background. Hence, the Jaccard Index has been widely used to
evaluate and benchmark image segmentation and object localiza-
tion algorithms (McGuinness & O’connor, 2010). Jaccard Index for
two sets A and B are defined as the ratio of the intersection and
union of the two sets:

JaccardIndex =
Intersection

Union
=

A ∩ B
A ∪ B

(4)

In our case, the set A represents the ground truth binary seg-
mentation mask Y , and set B corresponds to the predicted binary
segmentation mask Ŷ . Therefore, by taking the Jaccard Index as
the metric, we not only emphasize on precise segmentation but
also penalize under-segmentation and over-segmentation.

6.5. k-fold Cross-validation

Cross-Validation tests estimate the general effectiveness of an
algorithm on an independent dataset, ensuring a balance between
bias and variance. In a k-Fold cross-validation test, the dataset D
is randomly split into k mutually exclusive subsets D1,D2, . . . ,Dk
of equal or near-equal size (Kohavi et al., 1995). The algorithm is
run k times subsequently, each time taking one of the k splits
as the validation set and the rest as the training set. In or-
der to evaluate the segmentation accuracy of both the baseline
U-Net and proposed MultiResUNet architecture, we have per-
formed 5-Fold Cross Validation tests on each of the different
datasets.

Since this is a deep learning pipeline, the best result on the
validation set achieved through the total number of epochs (150
in our case) executed is recorded in each run. Finally, combining
the results of all the k runs gives us an overall estimation of the
performance of the algorithm.

7. Results

7.1. MultiResUNet consistently outperforms U-Net

As described in Sections 5 and 6, to evaluate the performance
of the proposed architecture, we have conducted experiments

https://github.com/nibtehaz/MultiResUNet
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Table 3
Models used in our experiments.
2D 3D

Model Parameters Model Parameters

U-Net (baseline) 7,759,521 3D U-Net (baseline) 19,078,593
MultiResUNet (proposed) 7,262,750 MultiResUNet 3D (proposed) 18,657,689

Table 4
Results of 5-fold cross-validation. Here, we present the best obtained results in the five folds, of both U-Net and
MultiResUNet, for all the datasets used. We also mention the relative improvement of MultiResUNet over U-Net. It
should be noted that, for better readability the fractional values of Jaccard Index have been converted to percentage
ratios (%).
Modality MultiResUNet (%) U-Net (%) Relative improvement (%)

Dermoscopy 80.2988 ± 0.3717 76.4277 ± 4.5183 5.065
Endoscopy 82.0574 ± 1.5953 74.4984 ± 1.4704 10.1465
Fluorescence microscopy 91.6537 ± 0.9563 89.3027 ± 2.1950 2.6326
Electron microscopy 87.9477 ± 0.7741 87.4092 ± 0.7071 0.6161
MRI 78.1936 ± 0.7868 77.1061 ± 0.7768 1.4104

with diversified classes of medical images, each with a unique
challenge of its own. In particular, we have performed 5-fold
cross-validation and observed the performance of our proposed
MultiResUNet and the baseline, U-Net. In each run, the best
results obtained on the validation set through the 150 epochs
performed are recorded and are combined from the 5 runs to
obtain the final result.

The results of the 5-Fold Cross-Validation for both the pro-
posed MultiResUNet model and baseline U-Net model on the
different datasets are presented in Table 4. It should be noted
that for better readability the fractional Jaccard Index values have
been converted to percentage ratios (%).

From the table, It can be observed that MultiResUNet out-
performs the base U-Net architecture in segmenting all different
types of medical images. Most notably, remarkable improvements
are observed for Dermoscopy and Endoscopy images. These im-
ages tend to be a bit less uniform and often they appear confusing
even to a trained eye (more details are discussed in a later
section). Therefore, these improvements are of great significance.
For Fluorescence Microscopy images as well, our model achieves
a 2.6326% relative improvement over U-Net, and despite having
a slightly lesser number of parameters, it still achieves a relative
improvement of 1.4104% for MRI images. Only for Electron Mi-
croscopy images, U-Net seems to be on par with MultiResUNet,
yet in that case, the latter obtains slightly better results (relative
improvement of 0.6161%).

7.2. MultiResUNet can obtain better results in less number of epochs

In addition to analyzing the best performing models from each
run, we also monitored how the model performance progressed
with epochs. In Fig. 6, the performance on the validation data
on each epoch is shown, for all the datasets. We have pre-
sented the band of Jaccard Index values at a certain epoch in
the 5-fold cross-validation. It can be noted that for all the cases
our proposed model attains convergence much faster. This can
be attributed to the synergy between residual connections and
batch normalization (Drozdzal et al., 2016). Moreover, apart from
Fig. 6d (i.e., for the Electron Microscopy dataset), in all other cases
the MultiResUNet model consistently outperforms the classical
U-Net model. In spite of lagging behind the U-Net at the begin-
ning for the Electron Microscopy images (Fig. 6d), eventually, the
MultiResUNet model converges at a better accuracy than U-Net.
Another remarkable observation from the experiments is that
except for some minor fluctuations, the standard deviation of the

performance of the MultiResUNet is much smaller (please refer
to the Supplementary Material 3 for a more precise idea); this
indicates the reliability and the robustness of the proposed model.

These results, therefore, suggest that using the proposed Mul-
tiResUNet architecture, we are likely to obtain superior results in
less number of training epochs as compared to the classical U-Net
architecture.

7.3. MultiResUNet delineates faint boundaries better

Being the current state of the art model for medical image
segmentation, U-Net has demonstrated quite satisfactory results
in our experiments. For instance, in Fig. 7, for a polyp with clearly
distinguishable boundary the U-Net model manages to segment
it with a high value of Jaccard Index (Fig. 7c); our proposed
model, however, performs better albeit only slightly (Fig. 7d).
But as we study more and more challenging images, especially
with not so much conspicuous boundaries, U-Net seems to be
struggling a bit (Fig. 8). The colon polyp images often suffer
from a lack of clear boundaries. On such cases, the U-Net model
either under-segmented (Fig. 8a) or over-segmented (Fig. 8b)
the polyps. Our proposed MultiResUNet, on the other hand, per-
formed considerably better in both cases. However, there are
some images where both the models faced complications, but
even in those cases, MultiResUNet’s performance was superior
(Fig. 8c). Dermoscopic images have comparatively clearer defined
boundaries; still, in those cases, MultiResUNet delineates the
boundaries better (Fig. 8d). The same phenomenon was observed
for other types of images. We hypothesize that the use of multiple
filter sizes allows MultiResUNet to perform better pixel-perfect
segmentation.

7.4. MultiResUNet is more immune to perturbations

The core concept of semantic segmentation is to cluster the
homologous regions of an image together. However, often in real-
world medical images, the homologous regions get deviated due
to various types of noises, artifacts and irregularities in general.
This makes it challenging to distinguish between the region of
interest and background in medical images. As a result, instead
of obtaining a continuous segmented region, we are often left
with a collection of fractured segmented regions. At the other
extreme, due to textures and perturbations, the plain background
sometimes appears similar to the region of interest. These two
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Fig. 6. Progress of the validation performance with the number of epochs. We record the value of Jaccard Index on validation data after each epoch. It can be observed
that not only MultiResUNet outperforms the U-Net model, but also the standard deviation of MultiResUNet is much smaller (please refer to the Supplementary Material
3 for a more precise idea).

Fig. 7. Segmenting a polyp with clearly visible boundary (7a). U-Net manages to segment the polyp with a high level of performance (J.I. = 0.9678) (7c). MultiResUNet
performs only slightly better (J.I. = 0.9697) (7d). Both the models seem to segment the polyp close to the ground truth (7b, 7e).

Fig. 8. Segmenting images with vague boundaries. This issue is more prominent for Colon Endoscopy images. U-Net seems to either under-segment (8a), or over-
segment (8b) the polyps. MultiResUNet manages to segment polyps of such situation much better (8a, 8b). However, some images are too problematic even for
MultiResUNet, but in those cases as well it performs better than U-Net (8c). Even in dermoscopy images, where there exists a clear boundary, U-Net sometimes
produces some irregularities along the boundaries, but MultiResUNet has been much more robust (8d).

cases lead to loss of information and false classifications respec-
tively. Fortunately, the Dermoscopy image dataset we have used
contains images with such confusing cases, allowing us to analyze
and compare the behavior and performance of the two models
thereon.

In spite of segmenting the images having a near consistent
background and approximately undeviating foreground with al-
most perfection, the baseline U-Net model seems to struggle
quite a bit in the presence of perturbations in images (Fig. 9). In

images where the foreground object tends to vary a bit, U-Net
was unable to segment the foreground as a continuous region.
It rather predicted a set of scattered regions (Fig. 9a), confusing
the foreground as background thereby causing the loss of some
valuable information. On the other hand, for images where the
background is not uniform, the U-Net model seems to make some
false predictions (Fig. 9b). The rougher the background becomes,
the more false predictions are made (Fig. 9c). Furthermore, in
some dreadfully adverse situations, where due to irregularity,
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Fig. 9. Segmenting images with irregularities. For images where the foreground is not consistent throughout, instead of segmenting it as a continuous region, U-Net
seems to have predicted a set of small regions (9a). For images with rough backgrounds U-Net sometimes classifies them as the foreground (9b), the more irregular
the background, the more false predictions are made (9c). At the other extreme, for images where difference between foreground and background is too subtle, U-Net
misses the foreground completely (9d). Though the segmentations produced by MultiResUNet in these challenging cases are not perfect, they have been consistently
better than that of the U-Net.

the difference between background and foreground is too subtle,
the U-Net model failed to make any prediction at all (Fig. 9d).
Although in such challenging cases the segmentation of MultiRe-
sUNet is not perfect, it performs far superior (5.065% better to be
specific) than the classical U-Net model as shown in Fig. 9. It is
worth noting here that in the initial stages of our experiments,
prior to using the ResPaths, our proposed model was also being
affected by such perturbations. Therefore, we conjecture that
applying additional non-linear operations on the encoder feature
maps makes it robust against perturbations.

7.5. MultiResUNet is more reliable against outliers

Often in medical images, some outliers are present, which,
in spite of being visually quite similar, are different from what
we are interested in segmenting. Particularly, in the Fluorescence
Microscopy image dataset, there exist some images with bright
objects, that are apparently almost indistinguishable from the
actual nuclei. Such an example is shown in Fig. 10.

It can be observed that the input image (Fig. 10a) is infected
with some small particles that are not actual cell nuclei (Fig. 10b).
However, if we study the segmentation mask generated from
U-Net, it turns out that U-Net has mistakenly predicted those
outlier particles to be cell nuclei (Fig. 10c). On the other hand,
our proposed MultiResUNet has been able to reject those outliers
(Fig. 10d). Since the outliers are pretty tiny, false predictions
made by the U-Net model do not hurt the value of Jaccard
Index that much (0.9317 instead of 0.9643, when outliers are
filtered out). Nevertheless, being able to segregate these outliers
are of substantial significance. It can be noted that similar types
of visually alike outliers are present in other datasets as well,
and MultiResUNet has been able to segment the images reliably
without making false predictions. The additional convolutional
operations along the proposed Res path are likely to contribute
towards this success. Since in the classical U-Net model the lower
level features from the encoder network are utilized in making
the final prediction, visually similar outliers can outsmart the net-
work. This somewhat rare quality of MultiResUNet, however, is
not properly reflected in a quantitative manner in the evaluation
metric for the reasons mentioned above.

7.6. Note on segmenting the majority class

The Electron Microscopy dataset is quite interesting and un-
orthodox as in this dataset the region of interest under consid-
eration actually comprises the major portion of an image. This
is a rare incident since usually, the region of interest consists
of a small portion of the image. This brings out a different type
of challenge as in such a case the models tend to over-segment
the images unnecessarily to minimize the losses during training.

A relevant example is presented in Fig. 11a. Here, it can be
observed quite astonishingly that the majority of the image is
actually foreground (Fig. 11b), with some narrow separations
among them by the background, i.e., membranes in this context. If
we analyze the segmentation predicted by U-Net, it appears that
those fine lines of separation have often been missed (Fig. 11c).
MultiResUNet, on the other hand, has managed to segment the
regions with properly defined separations among them (Fig. 11d).
Also, it can be observed that there are some small clusters of
background pixels, which have been captured with some success
in the segmentation mask predicted by MultiResUNet but are
almost non-existent in the segmentation performed by U-Net.
Furthermore, the result generated by MultiResUNet seems to be
more immune to the noises present in the image.

Despite that the two segmentations (i.e., the results of Mul-
tiResUNet and U-Net) are very different from each other, the
respective Jaccard Index values are quite alike (0.8914 and 0.8841
as shown in Fig. 11). This is due to the fact that the metric
Jaccard Index has been inflated with the results of segmenting
the majority class of the image. Therefore, the Jaccard Index falls
short in adequately representing the accuracy while segmenting
the majority class. Despite predicting much inferior segmenta-
tions, for this reason, the Jaccard Index of U-Net is very close
to that of MultiResUNet. Thus, among all the different datasets,
the improvement in terms of metric has been underwhelming in
this dataset but the predicted segmentations are more accurate
visually.

7.7. Ablation study

An ablation study has been conducted to investigate the in-
dividual contributions of the MultiRes blocks and the Res paths.
The experiments were performed from two ends; in the first
case we just included the Res paths in a plain U-Net model,
and in the second, we replaced the pair of convolutional blocks
with MultiRes blocks. Hence, a comparison has been made among
U-Net, U-Net with Res paths, U-Net with MultiRes blocks and
the MultiResUNet. We have selected the CVC-ClinicDB dataset for
this ablation study as it is the most challenging dataset, used in
our experiments. The results of the 5-fold cross-validation test
are presented in Table 5. It can be observed from the table that
inclusion of Res paths improves performance over the classical
U-Net. Introducing MultiRes blocks (alone, without Res path) is
even more effective as is evident from the table. However, when
both Res paths and MultiRes blocks are used (i.e., the proposed
MultiResUNet), the synergy between these two components yields
the best results.

On the other hand, from empirical observation, it was ob-
served that after introducing the MultiRes blocks the model was
more successful in fine detection of the edges and the distinctive
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Fig. 10. Segmenting images containing outliers. In the fluorescence microscopy images, the exist some bright particles, visually very similar to the cell nuclei under
analysis (10a). Although MultiResUNet can identify and reject those outliers (10d), U-Net seems to have mis-classified them (10c). This becomes more apparent from
the comparison presented in (10e).

Fig. 11. Segmenting the majority class. Here we can observe that the region of interest comprises most part of the image (11b). Despite the values of Jaccard Index
for both U-Net (11c) and MultiResUNet (11d) are quite similar, visually the segmentation masks are very different (11e). It can be seen that the segmentation mask
generated from MultiResUNet captures most of the fine separating lines, but U-Net tends to miss them. Moreover, there are some clusters of background pixels
which although are missed by U-Net, have been roughly identified by MultiResUNet. Since the class being segmented is the majority class, the values of Jaccard
Index are inflated.

Table 5
Ablation study investigating the individual contributions of MultiRes blocks
and Res paths. The results are obtained from CVC-ClinicDB through a 5-fold
cross-validation.
Model Fold = 1 Fold = 2 Fold = 3 Fold = 4 Fold = 5 Average

U-Net 73.71 72.08 74.89 75.58 76.23 74.5
Only ResPath 75.85 73.99 77.45 74.31 77.67 75.85
Only ResBlock 82.31 78.25 83.14 81.06 83.84 81.72
MultiResUnet 81.88 79.89 83.03 81 84.49 82.06

patterns or textures of the objects. Therefore, we hypothesize that
the inclusion of filters of different scales are allowing the model
to distinguish the boundaries better. On the contrary, it was
sometimes seen that models with only MultiRes blocks resulted
in some discontinuity within the segmented regions. Adding Res
paths improved the segmentation performance of such images.
Therefore, we conjecture that Res paths, by alleviating the seman-
tic gap between the encoder and decoder networks, actually make
the continuous homogeneous regions more homogeneous. This
is based on the intuition that certain signatures of the feature
maps propagated from the encoder network are likely to have
been lost during the pooling operation, but the corresponding
feature maps in decoder network may have generated those sig-
natures. Therefore, some additional convolutional operation along
the concatenation path aids in the proper fusion of these two
sets of feature maps, preserving the homogeneity throughout.
Some experimental results are presented in Fig. 12. However, it
may also be noted that occasionally models with only Res path
produce segmentations with discontinuity and sometimes models
involving MultiRes blocks miss some vague edges.

Table 6
Impact of data augmentation on both the models. The results are obtained from
CVC-ClinicDB through 5-fold cross-validation tests.
Model Fold = 1 Fold = 2 Fold = 3 Fold = 4 Fold = 5 Average

Without data augmentation

U-Net 73.71 72.08 74.89 75.58 76.23 74.498
MultiResUNet 81.88 79.89 83.03 81.00 84.49 82.057

With data augmentation

U-Net 80.47 78.45 80.97 77.02 79.29 79.240
MultiResUNet 85.06 83.18 87.49 83.35 85.78 84.972

7.8. Note on data augmentation

It is a well-known fact that data augmentation significantly
improves the performance of Convolutional Neural Networks.
However, the results presented so far are obtained without using
any data augmentation. Since we have opted to evaluate the gen-
eral behavior of the two models (i.e., MultiResUNet and classical
U-Net), we have been inclined towards testing the models with-
out any data augmentation. The primary reasoning behind this is
that the lack of data augmentation will make the training task
difficult for both the models and act as an additional adversity.

However, we have conducted a limited study with the models
employing data augmentation. Again, we have used the CVC-
ClinicDB dataset as it has been the most challenging one. We
have randomly flipped, rotated or done both and have increased
the training data up to three times thereby. Then we have eval-
uated the performance of the baseline U-Net and the proposed
MultiResUNet model. The results with and without data augmen-
tation are presented in Table 6.
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Fig. 12. Some empirical results investigating the individual contributions of the MultiRes blocks and Res paths. 12a and 12g present two example images from
CVC-ClinicDB and ISIC-2018 respectively, with 12b and 12h demonstrating the ground truth segmentations. It can be observed that adding either MultiRes block
(12d, 12j) or Res path (12e, 12k), achieves improvement over the standard U-Net (12c, 12i). Further observation reveals that the segmentation obtained from models
with only MultiRes blocks, though improves the overall boundary tracking, contains discontinuities therein (12d, 12j). On the other hand, models with only Res paths
alleviate internal discontinuities but perform poorly in boundary tracking (12e, 12k). However, in MultiResUNet the synergy between the two components settles a
balance of these two kinds of behavior, and obtains superior outcomes (12f, 12l).

From the experimental results, it can be observed that both
the models demonstrate improved performance with data aug-
mentation and MultiResUNet does perform better than classical
U-Net. However, for the baseline U-Net model, the improvement
(4.74%) appears to be a bit higher compared to that of MultiRe-
sUNet (2.91%). It is quite reasonable, as the baseline U-Net was
lagging far behind the MultiResUNet in this dataset with an ac-
curacy of 74.498%; the data augmentation paved the way for the
U-Net model to recognize some patterns that were comparatively
easily learnt by the MultiResUNet model (82.057% previously)
without data augmentation. Also, it is intuitive that the nearer the
predicted segmentation is to the perfect segmentation, the harder
it is to improve it further; this reasoning can be attributed to the
lower improvement of MultiResUNet after data augmentation as
compared to U-Net.

8. Conclusion

In this work, we started by analyzing the U-Net architecture
diligently, with the hope of finding potential rooms for improve-
ment. We noticed some discrepancy between the features passed
from the encoder network and the features propagating through
the decoder network. To reconcile these two incompatible sets
of features, we have proposed Res paths, that introduce some
additional processing to make the two feature maps more ho-
mogeneous. Furthermore, to augment U-Net with the ability of
multi-resolutional analysis, we have proposed MultiRes blocks.
We took inspirations from Inception blocks and formulated a
compact analogous structure, that is comparatively lightweight
and demands less memory. Incorporating these modifications, we
have developed a novel architecture, MultiResUNet.

Among the handful publicly available biomedical image
datasets, we selected the ones that were drastically different
from each other. Additionally, each of these datasets poses a
separate challenge of its own. The Murphy Lab Fluorescence Mi-
croscopy dataset is possibly the simplest dataset for performing
segmentation, having an acute difference in contrast between
the foreground, i.e., the cell nuclei and the background, but
contains some outliers. The CVC-ClinicDB dataset contains colon
endoscopy images where the boundaries between the polyps and
the background are so vague that often it becomes difficult to

distinguish even for a trained operator. In addition, the polyps
are diverse in terms of shape, size, structure, orientation etc.,
making this dataset indeed a challenging one. On the other hand,
the dermoscopy dataset contains images of poor contrast to the
extent that sometimes the skin lesions seem identical to the
background and vice versa. Moreover, various types of textures
present in both the background and the foreground make pattern
recognition quite difficult. ISBI-2012 Electron Microscopy dataset
presents a different type of challenge. In this dataset the region
being segmented covers the majority of the image; thus a ten-
dency is observed to over-segment the images. The MRI dataset,
on the other hand, contains multimodal 3D images, which is a
different problem altogether.

For perfect or near-perfect images, U-Net manages to perform
segmentation with remarkable accuracy. Our proposed architec-
ture performs only slightly better than U-Net in those cases. How-
ever, for intricate images suffering from noises, perturbations,
lack of clear boundaries etc., the gain in performance by Mul-
tiResUNet dramatically increases. More specifically, for the five
datasets a relative improvement in performance of 10.15%, 5.07%,
2.63%, 1.41%, and 0.62% has been observed in using MultiResUNet
over U-Net (Table 4). Not only the segmentations generated by
MultiResUNet attain a higher score in the evaluation metric, but
they are also visually more similar to the ground truth. Fur-
thermore, on the very challenging images, U-Net tends to over-
segment, under-segment, make false predictions and even miss
the objects completely. On the contrary, in the experiments, Mul-
tiResUNet has appeared to be more reliable and robust. MultiRe-
sUNet has managed to detect even the most subtle boundaries,
has been resilient in segmenting images with a lot of perturba-
tions, and has been rejectable to the outliers. Even in segmenting
the majority class, where the U-Net tends to over-segment, Mul-
tiResUNet manages to capture the fine details. Furthermore, the
straightforward 3D adaptation of MultiResUNet has performed
better than the 3D U-Net, which is not just a straightforward
3D implementation of the U-Net, in fact, is an enhanced and
improved version. It should be noted that the segmentations
generated by the proposed MultiResUNet are not perfect, but
in most of the cases, it outperforms the classical U-Net by a
moderate margin.
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Therefore, we believe that MultiResUNet architecture can be a
potential successor to the classical U-Net architecture as the state
of the art. Though in this work we have kept our analysis limited
to a boilerplate configuration, from additional experiments it
has been observed that use of advanced loss functions, e.g., dice
loss function (Milletari, Navab, & Ahmadi, 2016) significantly
improves the segmentation accuracy; data augmentation benefits
the model as well. The future direction of this research has several
branches. In this work, we have been motivated to keep the
number of parameters of our model comparable to that of the
U-Net model. However, in future, we wish to conduct exper-
iments to determine the best set of hyperparameters for the
model more exhaustively. Moreover, as more public datasets of
medical images of different modalities are curated, we would like
to evaluate our model performance on those datasets as well. Fur-
thermore, we are interested in experimenting by applying several
domain and application specific pre-processing and post-
processing schemes to our model for specific problems. We be-
lieve fusing our model to a domain specific expert knowledge
based pipeline, and coupling it with proper post-processing stages
will improve our model performance further, and allow us to
develop better segmentation methods for diversified applications.
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